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Abstract— The concept of the rigid—ideally plastic crystals with interacting slip systems is extended
for the case of the elastic—plastic crystals with work hardening. It allows the crystal analysis to be
performed in a similar way to the case of elastic-plastic continuum at large strains, i.e. on the basis
of the complete system of equations. As in classical plasticity. the flow rule is expressed in terms of
the Kirchhoff stress increment and the strain rate tensor. Three additional constitutive relations
between the plastic spin and stress components help to describe the lattice rotations. A smooth but
highly nonlinear yield condition is assumed as an approximation of the Schmid law. The hardening
law describing the self-hardening and the latent hardening is considered within the isotropic and
the kinematic approach. The complete model is applied to an analysis of the drawing process of
f.c.c. single crystals. By comparison with the numerical procedure based on the conventional rate-
independent approach, the calculations are simplified considerably.

INTRODUCTION

The rate-independent crystal plasticity farmulated by Hill and Rice (1972) is based on the
Schmid law as a yield condition. The ¢xistence of the plastic corners on the yield surfaces
leads to an ambiguity in a behaviour of the modcl. The rate-dependent approach (Asaro
and Needleman, 1985) overcomes the above difficulty. Such a formulation is satisfactory
for the processes with a deformation rate close to an assumed a priori reference strain
rate. For arbitrary processes, the modcl of crystals with interacting slip systems (Gambin,
1991a, b) has been proposed. The model is based on smooth yield surfaces with rounded
corners, which can be arbitrarily close to those generated by the Schmid law. The smoothness
of the yicld surfaces ensures the uniqueness of a model behaviour. In particular, it is possible
to formulate the complete system of equations for initial-boundary problems, including
lattice reorientations caused by large plastic strains. The model has been worked out for
rigid-ideally plastic crystals. An extension of the model for elastic-plastic work hardening
problems is the subject of this paper.

EXISTING MODELS OF ELASTIC-PLASTIC CRYSTALS

Because the kinematics of elastic-plastic crystals is well described in the literature [cf.
Asaro (1983)], let us focus our considerations on the constitutive relations. All quantities
will be referred to a fixed Cartesian system of coordinates. Let 1, = (p/p,)o;; be the
KirchhofT stress tensor, where o, is the Cauchy stress, and p,, as well as p, are the mass
densities in the reference and current configurations, respectively. A stress increment is
described by the Zaremba-Jaumann derivative of the Kirchhoff stress :

v .
T = Tij— Wik Tie; + T Wy m

where 7, is the material derivative of 7,;, and w;; is the total material spin. The general form
of the constitutive law for elastic-plastic crystals is as follows [see rule (3.17) in Asaro
(1983)):
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In rule (2). &, are elastic moduli, d, is the total strain rate. and 7**' are slip rates on slip
systems: % = 1.2...., M. Moreover,

{ ” 2 -
g = Wy =T W (3)

The functions
P:](:) — %(S;(:)m:u)+m:(x)5:(z)) and Wv‘fl(z) — %(S:(x)”!;(ﬂ_’n:(zl\‘.:u)) (45)

are defined by the current orientation of the slip direction 5] and the normal to the slip
plane m;*®. Denote by s'* and m!” the slip direction and the normal to the slip plane in the
reference configuration. [t is assumed that

s =Fis™ and m® =m0 F (6.7
where F; is the elastic part of the total deformation gradient F,;. Recall that
[:1,/ = F:.kal (8)

where F;, describes a stretching and rotation of the crystalline lattice, and FF, is the plastic
part of F; due solely to slip.
Note that introducing the plastic strain rate

M
df; - Z P"}(ﬂ:}(x) {9)
2wl
and the plastic spin
M
wf =y Wi (10)

z= |

one can write refation (2) in the following alternative form:

o
v P i P
T, = -?gi;udu" Z ("‘Z}l[kt’(ka—*—(‘U:kri; - Tl )- {(mn
x -~ 1

As in the case of classical continuum plasticity we are looking for a retation between
1y and d,;. To obtain it, one can express the slip rates ' in (2) in terms of the total strain
rate di;, as in the rate-independent model introduced by Hill and Rice (1972). The other
way is to express the slip rates ¥ by the stress tensor 1,;, as in the rate-dependent model
proposed by Asaro and Needleman (1985). Recall the above formulations.

Rute-independent model
Here, the demanded relation between the slip rates and the total strain rate is the

following [see Asaro (1983)]:

M
. i cef .y 3
§0 =Y gz'ifd, where il =2,,P "+ (12,13

EED!

and
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918 = h18+}'£;)P:j{m' (14)

The hardening moduli A, determine an increment in the current critical shear stress

M

=Y hy#® for 7920 B=12,....M (15,16)
{

=)
. =
B=

T

In relation (12). the 7s are uniquely determined if the matrix g,; is positive definite. It
is satisfied when the number of potentially active slip systems does not exceed five. In this
case the matrix g,;' exists and one can introduce (12) into (2) in order to obtain the final
form of the constitutive relation

M M
'L',V; = (6‘ukldk1 where (61,‘,“ = gijkl”‘" Z Z )f])g;,,'}.}’,” (17, IS)

2w b B ]

are elastic-plastic moduli,
Now, the constitutive relation has the explicit form, but the chotce of the active slip
systems makes any analysis a very cumbersome one.

Rate-dependent model
To avoid the above dithculty, a plastic behaviour of crystals is modelled by a viscous

one, according to the rule
bm) < L
oo gm[ T - (19)
;o=a g

where 4 is an assumed a priori reference strain rate. The functions g describe the crystal
work hardening. Their evolution is specified by the hardening law

1(1)

et

9

M
9% =Y hyli? (20)

1= ]

where f,; are hardening moduli. The component I/m characterizes the material rate sensi-
tivity, which diminishes when m is tending to zero. Introducing relation (19) into (2) one
can obtain a viscous flow rule in which the stress increment 1, is expressed by the strain
rate ¢, and the stress tensor ;.

In the model, the slip shear rates are uniquely specified by (19), and the problem of
choice of active slip systems disappears. However, the model depends on the assumed a

priori reference strain rate 4.

THE PROPOSED MODEL

The model of rigid-ideally plastic crystals which uniquely describes the really plastic
(rate-independent) crystal behaviour has been given by Gambin (1991a) [see also Gambin
(1991b)]. The model may be extended in the case of elastic—plastic work hardened crystals.
Below, two approaches to the work hardening description are presented.
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Isotropic approach
The slip systems interuction rule proposed by Gambin (1991a) leads to the relation

: (z)\2n - 1
R (2h
= -
f‘cn Ti”

where an increment of the current critical shear stress t'¥ is prescribed by the hardening
law

M
Y L (22)

1=

The parameter n = 1. 2.. ... in the exponent of the relation (21) is assumed to be a material
constant and determines a degree of interactions between slip systems.

Rule (21) is very similar to relation (19) which describes the viscous crystals, but
instead of the assumed a priori reference strain rate ¢™', a non-negative function of the
loading process 4 is introduced. This function is calculated from the following smooth yield

condition :
7] rm 2n 1 [T Y] t”” 2n
—_ b o po _
(1} ) Z Z = (1) P'I Pll - 0 (23)
AN M =T T

N

AN

x
where

TP = s s (24)

are the functions £ related to the reference configuration.

The above yield condition, associated with the slip system interaction rule, is the crucial
point of the presented formulation. For n = 1, it gives the Mises criterion with quadratic
yield surfaces. Generally, yield surfaces described by (23) have rounded-oft plastic corners
with a radius of curvature arbitrarily small, for large n. For n = 15, the yield surfaces
generated by (23) approximate well with those created by the Schmid law.

To determine the function 4, denote by / the left side of the plasticity condition (23).
Then the consistency condition : f = 0 takes the following form :

Y] (1) :(x) () \2n MM (5 (1) (V1) 2n
3 G ST ) RESULAS o (ST IS
(2) (x) (2} H (x) @ 5w 1 ' -
2= | T T Te AI::I f=1 T T T;

One can prove [see (2.56) and (2.59) in Asaro (1983)], that
= AP dh (26)

where d* = d,—d} is the elastic part of the total strain rate tensor. Taking into account
(9) and (21), the relation (26) may be written in the form

7

s(1) peU (Hr\n -1

ALY P T

S _ (g [ A R e, 2

R D) 7 (gm) : (27)
< S

=1

On the other hand, by introducing (21) into (22) one can obtain
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l ix)
] Z b ('f,,,l) (28)

=1

The relations (23). (27) and (28) enable the function 4 to be expressed in terms of the total
strain rate tensor

=
F

YRR P ——

7 4 +h
F mn 2 mn 1

(29)

In the above

M /‘(x) T“) 2n -1 \ P‘lx) ,L.lz) 2n - |
77— AL B ¢ = DU B
Fiy = Z 0\ -0 Jip = Z 0 T (30,31)
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<

Concluding. the incremental constitutive relation one can write in the foltowing final
form :

FF
T = <--’/,:/Al"' e )‘/A/c (33)

o S mn l'qmn +h(l

Note that the Prandtl Reuss equations have the same form in the case of isolropic
plasticity at large strains {sce rule (20) in McMecking and Rice (1975)]. In that case it is
cnough to assume

, ’ 20 0
S iq = 'y‘l/klo‘k/ {gu = Ul/ h() = ,‘llo-mno-mn (34v 357 36)

where &, are the elastic moduli, o}, is the Cauchy stress deviator, and A is the isotropic
hardening modulus. The above has a great importance : exchanging rules (34)-(36) on (30)-
(32). one can use the standard FEM procedures for a finite element analysis of elastic—
plastic crystals.

Kinematic approach

Sometimes, it is convenient to assume & kinematic hardening law instead of (22). In
this cuse, the incremental constitutive relation (33) is valid, provided that we redefine the
functions 7, 4,; and h,. For this reason, consider the following relation

. /‘. t(z]__uu) n ool
T = l‘\,i_:) "—ZZL}]—" (37)

instead of (21). In the above, &' arc the initial critical shear stresss, and «' are the residual
shear stresses for cach of the slip systems prescribed by the hardening law

M
=Y hyi". (38)

=1

The non-negative function 4 in (37) is calculated from the following yield condition [com-
pare this with (23)]:
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The initial yield surfaces described by (39) may be regarded as an approximation of those
generated by the Schmid law. As previously, one can determine the function Z by letting f
represent the left side of (39). Then. the consistency condition: f = 0 takes the form

A

L LU A LS LR
Z “"“/:,T{»"'” i l'\,'«"'x'i" h =0. (40)

z=1

Taking into account (9) and (37), the relation {26) may be written in the form

AL {0 pUd (H (H\2n - |
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On the other hand. introducing (37) into (38) one can obtain

i i i h\In 1
T —u
L] . 9y
an =4 Z hilfk(/i) ( /\'“" ) . (4-—)
f1 ¢ ¢

The relations (40)-(42) cnable the function 4 to be expressed in terms of the total strain
rate tensor

¥

. i
A= d,. (43)
F "n (/’ mr + hl) '

In the above,
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Then, the incremental constitutive relation takes the form of the rule (33). As in the
isotropic approach, one can adopt the standard FEM procedures for a finite element
analysis of elastic—plastic crystals. Note that the kinematic approach gives some advantages:
one can determine values of residual stresses in a crystal, and the expression for the
kinematic hardening function 4, given by (46) is simpler than for the isotropic one [see
rule (32)}.

LATTICE REORIENTATIONS

An analysis of elastic~plastic crystals at small strains is quite simple: for an initial
lattice orientation, one should calculate the functions P! according to (24). to check the
plasticity condition (23) or (39) and to determine the functions #,,, %, and h, according
to the rules (29)-(32) or (44)-(46).

In the case of large plastic strains, the plasticity condition and the functions #,, %,
and h, are determined by the quantities P;™ [see definition (4)]. These quantities are related
to the current lattice configuration described by
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F, = ULRy; 47

where U}, represents the elastic stretching, and Rj}; represents the lattice rotation with
respect to the reference configuration. Neglecting an influence of the lattice stretching on
the slip system vectors, one can assume

*(x)

-
5 ()

=R}s® and mj* = R;m? (48,49)

instead of (6)-(7). An increment of R}, may be found from the following rule:
R} = wy Ry, (50)

where the lattice spin wj; is the difference between the total spin w, and its plastic part wf.
Introducing (21) and (29)-(32) [or (37) and {43)-(46)] into (10), one can obtain

K. (&2))

For W;/® prescribed by (5), the function ¢, within the isotropic approach is defined as
follows

M W:h) r{x} I -t
Hy=3 *u’;“‘('z_;)) (52)

Te

and within the kinematic approach—by the rule

M LV:H) ,t(:)__a('x) n -1
Hy = Z ‘,jiT‘( _k.,‘:” ) . (33)

x= |
Then, for a given velocity field, v;,

F kl dkl

* i
wi/‘ = 2(Ui.j _vj.i) = F 2z 1
'g:mngmn + h()

. (54)

An incremental procedure based on rule (50) does not ensure the orthogonality of the
updated rotation matrix R}. For this reason, it is better to express R}, in terms of three
Euler angles {¢,.®, ¢,}. and next to calculate their increments {¢,, ®, ¢.} from the fol-
lowing rules [cf. Clement and Coulomb (1979)]:

Sin {pl - + Ccos ‘f’z . (b . . - . . (D *
. 43 29 e (1} = —CO0S YW+~ SinN [4/] = — COS P —wy,>.
sin® U8 G @n @223 Py @2 @ 12

(f’t = -
(55,56,57)

In the literature, the above rules are usually given in terms of the rotation vector r; connected
with the lattice spin by the relation

r,= ésijkw:,‘ (58)

where ¢, is the antisymmetric permutational symbol.
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LATENT HARDENING

The hardening moduli A,, introduced in (22) and (38) are known in the literature as
“slip-plane hardening rates™ (Asaro. 1983). The diagonal terms of the matrix h,; represent
the “self-hardening” on the considered slip system. whereas the off-diagonal terms describe
the “latent hardening™ on the remains slip systems. A ratio of the latent hardening to the
self-hardening takes values from the interval 1 € ¢ < 1.4, Because this ratio is larger than
one, the lattice rotations “overshoot™ the symmetry position between two conjugate slip
systems. The above effect is commonly reported in the literature {Asaro. 1983).

Let us investigate the phenomenon with the example of the drawing process of single
f.c.c. crystals. Consider reorientations of longitudinal axes of extended crystalline samples
to the fixed crystallographic directions during extension reaching up to 100%. Assume,
within the kinematic approach. that the hardening moduli are prescribed by the rule

hx/l = ll[(l!z!!+(l '—{[}d;gi} (59)

where, 1, is the matrix with all elements equal to one. 6, -~ Kronecker symbol, f1—a
constant self-hardening rate (the same for all slip systems). and ¢ —the latent hardening
ratio. The results of calculations for seven crystals with various initial orientations and for
the parameters:n = 15, h = 0.0 and ¢ = L1 are shown in Fig. 1. In every considered case,
one can observe the overshoot phenomenon. It is interesting to compare the above results
with those obtained for the rigid Adeadly plastic erystals {sec Fig. 1in Gambin (1991)].

Last of all, the simplicity of the performed analysis should be highlighted ; all cal-
culations were exceuted with the aid of the table calculator H-P 9830A with internal memory
4.5 kB.

CONCLUDING REMARKS

The concept of clastic plastic crystals with interacted slip systems helps to formulate
the probiem of the crystal analysis on the base of the complete system of equations, as it
was done in classical continuum plasticity. The obtained constitutive relation has the same
form as that derived by McMeeking and Rice (1975) for the isotropic plasticity at large
strains. Working on the basis of the introduced model, one can adopt the standurd FEM
procedures for a numerical analysis of elastic -plastic crystals. The proposed model may be
a starting-point for an analysis of clastic -plastic polycrystals.

001 on

Fig. 1. Lattice reorientations during the extension of fo.c erystals with muximum clongation of
100%%. The distance between successive dots corresponds 1o a strain of 2.5%.
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